证明题:如果y=f(x)在x0处可导,那么lim(h->0)[f(x0+h)-f(x0-h)]/2h=f'(x0).证明

证明题:如果y=f(x)在x0处可导,那么lim(h->0)[f(x0+h)-f(x0-h)]/2h=f'(x0).证明逆定理

全题:如果y=f(x)在x0处可导,那么lim(h->0)[f(x0+h)-f(x0-h)]/2h=f'(x0).反之,如果lim(h->0)[f(x0+h)-f(x0-h)]/2h存在,那么f'(x0)是否一定存在? 求过程 越想越好 谢谢各位大神啦啦~~

问答/385℃/2024-12-05 20:59:07

优质解答:

名师点评:

小倦zoC

我来回答

猜你喜欢

Copyright © 作文乐园 Inc.
Www.821218.Com All Rights Reserved
网站、品牌合作请联系